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I. INTRODUCTION 

Thie report describe8 the research result8 obtained in the 

period from January 15, 1987 to January 15, 1988 for the research 

program eupported by NASA under Grant No. NAGW-319. The Photo- 

abeorption and photodiseociation cross sections of interstellar 

molecules and radicals were measured in the 90-200 nm region 

using eynchrotron radiation, F2 laser, exclmer lasers, and 

discharge lamps ae light eources. These data are currently 

needed for determining the formation and destruction rates of 

molecules and radicals by the interstellar radiation field. 

11. RESEARCH ACCOMPLISHED 

The research results accompliehed in the period from January 

15, 1987 to January 15, 1988 are summarized below: 

A. Photoabeor~tion and PhotodeDosition of H7S and D2S_ 

H2S le quite abundant in the intersteller medium. The 

photoabeorption and photodiesoclation croee eections of H2S and 

D2S were meaeured, and the results were published in the Journal 

of Chemical Phyelcs. A reprint of the paper is attached as 

Appendix A. 

B. Photoabsorptlon and Photodissociation of CHS1. CH2C17, 
CHC1. and CCl4 

photodiesociation of chloromethanes (CHnCl4-n; n=1-3) may 

produce CHn radicals that are important in the study of 

interstellar photochemietry. The photodiesociation croes 

sections of these molecules are the most fundamental information 

needed to determine the concentratione of the CHn radicals; and 
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these data were measured in this reeearch program. All the 

studied molecules show broad abeorption bande, indicating that 

photoabsorption of these molecules lead to dieeociation. The 

photoabsorption cross section is thue essentially equal to the 

photodiesociation crose section. The results are described in 

more detail in a paper attached as Appendix B. 

C. PhotoabsorDtion and Photod~esociation of HCOOH. HCOOCH2L 
and CH2COOH 

Formic acid (HCOOH) and acetic acid (CH3COOH) are abundant 

in the interstellar medium. Their photoabsorption and 

photodiseoclation croes sections are needed to determine their 

lifetimes in the interetellar clouds, and they were meaeured in 

the 105-250 nm region. Emissions from excited HCOO photofragment 

were observed from photoexcitation of HCOOH and HCOOCH3, and 

their fluorescence cross sections were measured. The result8 are 

summarized In a paper attached as Appendix C. 

D. Photoexcitation of CH2 

CH3 is an important interstellar radical. The 

Photoexcitation process of CH3 is of interest for the study of 

the hydrocarbon cycle in the interetellar photochemistry. CH3 

was produced by either photodieeociation of CH3C1 or by reactions 

of CH4 with F and C1 atoms, which were produced by a microwave 

diecharge of trace F 2  and C 1 2  in He. The C H ( A , B  --> X) emleeione 

were observed when CH3 wae excited by F 2  laser photons (157.5 nm) 

by a eingle-photon proceee and by ArF laser photons (193 nm) by a 

two-photon process. This emieeion is a useful means for the 

detection of CH3. We will use the current result ae a base for 
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the measurement of CH3 photoabsorption cross section. The result 

for the study of CH3 is summarized in a paper attached as 

Appendix D. 

E. Photoabsorption of 1 3 C O  

CO is one of the most abundant interstellar molecules. The 

photoabsorption cross sections of both 12CO and 1 3 C O  are needed 

for understanding the photochemistry of interstellar clouds. The 

photoabsorption cross section of 12CO has been measured, but the 

cross section for the absorption continua are still not certain. 

We will continue the measurement in the next funding period. 

The photoabsorption cross section of 13C0 has been mea8ured 

in the current funding period. The preliminary result ehows that 

the photoabsorption spectrum of 13CO is slightly different from 

that of l 2 C 0 .  The photoabsorption cross sections of 1 3 C 0  and 

12CO will be analyzed in the next funding period. 
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Fluorescence Yields from Photodissociative Excitation 

of HCOOH, HCOOCH3 and CH3COOH in the Vacuum Ultraviolet 

. Masako Suto*, Xiuyan Wang, and L. C. Leea) 

Department of Electrical 6 Computer Engineering 

San Diego State University 

San Diego, California 92182 

ABSTRACT 

The photoexcitation processes of HCOOH, HCOOCH3 and CH3COOH 

were studied in the vacuum ultraviolet region using synchrotron 

radiation and a pulsed discharge lamp as light sources. The 

absorption and fluorescence cross sections of these molecule6 

were measured in the 106-260 nm region. Fluorescences were 

detected from photoexcitation of HCOOH and HCOOCH3, but not from 

CH-JCOOH. Fluorescence produced at 123.9 nm was dispersed and 

identified as the excited OH and HCOO radicals. Fluorescence 

quantum yields of HCOOH and HCOOCH3 increase with decreasing 

excitation wavelengths with maxima of 5% and 0.3% at 106 nm, 

respectively. 

a) Also, Department of Chemistry, San Diego State University 
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I. Introduction 

Fluorescence8 from photodissociative excitation of HCOOX 

(X=H, Me, and Et) were observed a long time ago by Style and 

Ward. 1 The emitter was attributed to the excited HCOO 

radical.1-3 However, the HC02 emission was not shown in the 

fluorescence spectrum reported by Vinogradov and Vilesov,4 when 

HCOOH was excited by vacuum ultraviolet ( V U V )  radiation. They 

attributed the fluorescence to the OH(A-X) system, but not to 

HCOO. It is of interest to elucidate this difference. 

The photoabsorption of HCOOH has been extensively 

investigated both in the VUV and UV regions.4'15 The Rydberg 

series shown in the absorption spectrum were well assigned, but 

the valence states were not identified.13 The photoabsorption of 

HCOOCH3 is less extensively s t ~ d i e d 5 ~ 9 ~ 1 0  than that of HCOOH. 

The absorption spectra of carboxyl compounds show similarity, 

because the absorption is mainly induced by the active electrons 

in the common C=O bond. 

The photodissociative excitation processes of carboxyl 

compounds are little studied. To the authors' knowledge, the 

fluorescence yield of HCOOH given by Vinogradov and Vilesov4 is 

the only study related to this subject. However, their 

absorption spectrum is quite different from the published data5 

and their fluorescence spectra are not consistent with other 

observations.1 Thus, the cross sections for the production of 

fluorescence from photodissociative excitation of HCOOH and 

HCOOCH3 are essentially not known; and these data are reported in 
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this paper. In order to confirm the emitting species, the 

photoexcitation process of CH3COOH was also studied, and the 

result is included in this paper. The fluorescence yield of this 

molecule is too small to observe. This result is again 

different from the obsqrvation of Vinogradov and Vilesov4 who 

reported a substantial fluorescence yield. 

In addition to fundamental interest in understanding 

photoexcitation processes, the current results are useful for the 

study of photochemistry in the Earth’s upper atmosphere and the 

interstellar medium. Formic and acetic acids are detected in the 

upper troposphere and in rainwater.16‘19 The formation and 

destruction mechanisms of these organic acids both in the gas and 

liquid phases are needed for understanding their roles in the 

formation process of acid rain.20,21 HCOOH and HCOOCH3 have been 

detected in the interstellar diffuse clouds.22-25 Their 

photodissociation cross sections are needed for calculation of 

their photodissociation rates in the interstellar radiation 

field. 26 

11. EXPERIMENTAL 

The experimental set-up for the synchrotron radiation 

measurement has been described in a previous paper.27 In brief, 

synchrotron radiation produced from the 1-GeV electron storage 

ring at the University of Wisconsin was dispersed by a l-m vacuum 

monochromator. The optical path length was 41.1 cm. Absorption 

cross sections were measured according to Beer’s law. The linear 

dependence of absorbance on pressure was observed, and the 
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photoabsorption cross section was determined from the slope. It 

is noted that the measured absorption cross sections of a sharp 

band depends on the monochromator slit width. The UV-visible 

fluorescence was monitored by a cooled PMT (EM1 955888) sensitive 

in the 180-800 nm region. The fluorescence was simultaneously 

observed with the photoabsorption measurement in a direction 

perpendicular to the incident photon beam. 

For the fluorescence dispersion experiment, the sample gas 

was irradiated by a N V  line at 123.9 nm produced from a 

capillary-condensed-discharge light source which was isolated by 

a 1-m vacuum monochromator (McPherson 225). The fluorescence was 

dispersed by a 0.3-m monochromator (McPherson 218) and detected 

by a cooled PMT (EM1 9558QB). Signal from the PMT was processed 

by a gated photon counter (EGGG ORTEC) 

Samples of HCOOH (96.8% purity) and HCOOCH3 (99.8%) were 

obtained from Sigma Chemical Co. CH3COOH was supplied by Fisher 

with a purity of 99.7%. The sample gases were degassed at 97 K 

prior to use for measurements. The major Impurity in HCOOH was 

water. The gas cell was continuously pumped by a sorption pump 

to maintain a constant pressure. This flow system minimized the 

contamination by impurities produced from photodissociation of 

sample gas and outgassing of walls. The pressure in the gas 

cell was monitored by a MKS Baratron manometer. 

Both HCOOH and CH3COOH form dimers in the gas phase. The 

concentration ratio of dimer to monomer is negligibly small at 

pressures lower than 50 mtorr.28*29 If high vapor pressure was 
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used, a small fraction of absorption is due to dimers. The 

measurements were done at room temperature (22 OC). 

111. RESULTS AND DISCUSSION 

A. Fluorescence Spectra 

The fluorescence spectra from photoexcitation of HCOOH and 

HCOOCH3 at 123.9 nm are shown in Fig. l(a) and l(b), 

respectively. Both spectra, which consist of the OH(A-X) band at 

310 nm and a broad continuum in the 330-500 nm region, are 

similar. The emission spectrum from photoexcitation of CH3COOH 

at 123.9 nm was also examed as shown in Fig. l(c). The emission 

signal from this molecule does not differ from the background 

shown in Fig. l(d), which was taken with no gas in the gas cell. 

This result indicates that the emission from CH3COOH is not 

detectable. 

When one atmosphere of He was added to the gas cell, 

vibrational bands of the emission from HCOOH and HCOOCH3 

photolysis appear in the fluorescence spectra as shown in Fig. 2. 

This is due to rotational and vibrational relaxation of the 

excited state(s) to low vibrational level(s) by collision with 

added helium. The vibrational structure is related to the 

vibrational progression(s) of the lower state. The vibrational 

bands are classified into two vibrational progreseions with an 

average frequency spacing of 1195 cm-1. These progressions are 

shifted to each other by about 690 cm-1. It is noted that the OH 

emission bands also become sharper when He is added. 
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Style and Wardl have observed emissions from photoexcitation 

of HCOOH, DCOOH, DCOOD, HCOOMe and HCOOEt. The emission spectra 

are similar when hydrogen atoms were replaced by deuterium. The 

fluorescence spectra from methyl and ethyl formates were very 

similar to that of HCOOH except for broadening. . Thus, they 

concluded that the emitting species responsible for this blue 

fluorescence in the 330-500 nm region is the HCOO radical. 

Later, Peacock et al.3 reexamined this emission system by 

molecular orbital calculation and concluded that the fluorescence 

is indeed due to HCOO. The blue emission was also observed from 

the collisions of HCOOH with metastable Ar (3P2,o) atom.30 The 

current results further confirm that the emitting species is the 

HCOO radical, but not COOH. 

For the HCOOH photolysis, the OH fluorescence intensity is 

only about 8% of the HCOO emission as shown in Fig. l(a). This 

is quite different from the result of Vinogradov and Vilesov who 

did not report the HCOO emission.4 The OH emission may partly 

originate from the photolysis of H20 which may exist as 

impurities. However, the H20 contribution may not be 

significant, because the H20 spectra do not appear in the 

absorption and fluorescence excitation spectra of HCOOH as 

discussed in the next section. 

The fluorescence spectrum from the photolysis of HCOOCH3 in 

the 300-350 nm region (see Fig. l(b)) is mainly due to the OH(A- 

X) emission. It may possibly contain the CH30(A-X) system31. 

The CH3O emission may be produced from photolysis of HCOOCH3. 

c -  
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However, it is not certain whether the CH30 emission is present, 

because characteristic vibrational strucure of the CH30 

emission31 is not clear in Fig.l(b). The OH emission is likely 

from the H20 impurities. Since the fluorescence cross section of 

HCOOCH3 is relatively small (as discussed in the next section), 

the OH emission shows up more distinctly in Figs. l(b) and 2(b). 

B. Photoabsorption and Fluorescence Cross Sections 

B . l  HCOOH 

The absorption cross section of HCOOH was measured in the 

106-250 nm region as shown in Figs. 3(a) an (b). In the 106-180 

nm region, the absorption cross sections were measured at low gas 

pressure so that the data were free from the interference of 

dimers. The experimental uncertainties are estimated to be + 10% 

of the given values. Present values agree well with those 

measured by Barnes and Simpson,5 except that the current peak 

cross sections are generally higher than theirs because of high 

monochromator resolution in the current work. The data of 

Nagakura et a1.9 are higher than the current ones. 

Since the absorption cross section in the 180-250 nm region 

is very small, relatively high pressures (up to 1 torr) were used 

for the measurement. HCOOH tends to form dimers at high 

pressure. For example, in 1 torr of HCOOH vapor, about 30% of 

the molecules are dimers.28r29 The absorption cross sections of 

HCOOH monomer and dimer have been extensively studied by 
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Singleton et al.15 The dimer effect is not corrected for the 

absorption spectrum shown in Fig. 3(b). 

The excited states of HCOOH have been studied by the 

photographic absorption spectra8’10 and 

spectrum.11,12 Three Rydberg series converging to the ionization . 

the electron-energy-loss 

limit at 109.41 nm (11.332 eV132-34 were classi€ied with quantum 

defects of 0.85, 0.6 and 0.14 for the transitions of s, p and d 

Rydberg orbitals, respectively. 8,  10 The early members of each 

series have vibrational progressions with a vibrational frequency 

of about 1500 cm-1. The vibrational frequency and the intensity 

pattern are very similar to the photoelectron spectrum of the 

ground state of the HCOOH ion.3Sr36 

The ground state of the ion is planar and the vibrational 

frequency of C=O stretching ( v 3  mode) is about 1500 cm-1, while 

the ground state of neutral HCOOH is non planar and the v 3  

vibrational frequency is 1770 cm-1. The Rydberg states assigned 

by Bell et al.1° and the excited states classified by Herzberg37 

are indicated in Fig. 3. Fridhll has reclassified the Rydberg 

states into three p type Rydberg series (npa’a, npa’r and npa”). 

The npa’a and npa’n series correspond to the ns and np series of 

Bell et al.lO, respectively. The first mumber of npa” series 

exists in the c“ state. The nd series of Bell et al.1° is 

assigned to the nsa’ series with 6=1.14, in which the first 

member at the D state is the 488’ state. 
N 

k (r 

The presence of valence states in the region of the C and B 

states has been discussed by Robin.13 The no ----+ o *  valence 
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transition may exist around 138 nm (C state).13 The 6 state has 
been assigned to the no --3 3s Rydberg transition by Bell et 

al.10, but it was assigned to the n 2  --3 n* valence transition by 

Barnes and Simpson.5 The broad continuum in the 160-185 nm 

region has been assigned to the v 2  --3 n* valence transition by 

Bell et al.10 and Nagakura et al.9, but it was assigned to the 

3sa’ Rydberg state by Fridh.11 The A state in the UV region is 

assigned to the no --3 n* valence transition. The long 

vibrational progression in the 225-260 nm region has a frequency 

of 1080 cm-1 (v3,  C=O stretching mode) associated with sub-bands 

of 400 cm-1 ( V 7 ,  OCO bending mode), which has been investigated 

by Ng and Bell.7 

rr 

Fluorescence was observed from the photolysis of HCOOH at 

excitation wavelengths shorter than 140 nm. Emissions are due to 

HCOO and OH radical8 as discussed above. At low gas pressure, 

the fluorescence intensity is given by, 

If = CFafIn (1) 

where C is the geometrical constant, F is the detection 

efficiency of the PMT, Of is the fluorescence cross section, I is 

the intensity of dispersed synchrotron radiation , and n is the 
concentration of the sample gas. Equation (1) is valid only when 

the loss of the excited fragments due to quenching can be 

neglected. The detection efficiency of the PMT is considered to 

be same for both emissions of OH at 310 nm and HCOO at 350-500 

nm. Thus, CF in Equation (1) can be evaluated by measureing the 

OH emission intensity from the photolysis of H20, of which 
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fluorescence cross section is known.Z7 The fluorescence 

intensity from HCOOH photolysis was converted to the absolute 

fluorescence cross section. The cross section for the production 

of fluorescence in the 200-800 nm region is shown in Fig. 3(a). 

The experimental uncertainty is about 30% of the given values. 

The fluorescence cross section in the 130-140 nm region is very 

small. The fluorescence excitation spectrum generally follows 

the absorption spectrum, except for a small difference in the 

120-130 nm region. 

In the fluorescence cross section measurements, optical 

filters were used to isolate the HCOO emission from the OH band. 

The fraction of the OH emission in the total fluorescence cross 

section shown in Fig.3(a) is estimated to be less than 10%. 

This result is consistent with the fluorescence dispersion 

experiment that the HCOO emission is dominant. The contamination 

from water impurity is very small, because the characteristic 

bands of H 2 0  do not show up in both the absorption and 

fluorescence excitation spectra of Fig. 3(a). 

B. 2 HCOOCHn 

The absorption cross section of HCOOCH3 was measured In the 

106-250 nm region as shown in Figa. 4(a) and 4(b). The current 

measurement agrees with the data of Barnes and Simpson in the 

124-250 nm region.5 The absorption spectrum shows band structure 

superimposing on continua. The absorption spectrum of HCOOCH3 is 

similar to that of HCOOH. By analogy with HCOOH, the excited 

states of HCOOCH3 are labelled as shown in Fig. 4. The A state 
* 
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is probably the no --3 T I *  valence transition with a weak 

vibrational band of frequency about 980 cm-1. The absorption 

bands are likely the Rydberg states converging to the first 

ionization potential at 10.815 eV (114.64 nml.33 Some of the 

prominent peaks in the C.and D states are separated by about 1400 
CI r, 

cm-1, which is likely the C=O stretching vibration as observed in 

HCOOH and CH3COOH. In the and states, there are a number of 

weak vibrational subbands with frequencies of 200-400 cm'l, 

Fluorescence from photoexcitation of HCOOCH3 appears at 

excitation wavelengths shorter than 134 nm. The fluorescence 

cross section is shown in Fig. 4(a). The fluorescence excitation 

spectrum follows the absorption spectrum, except for fine 

structure that is not apparent in the fluorescence excitation 

spectrum. The fluorescence cross section of HCOOCH3 is about one 

order of magnitude smaller than that of HCOOH, in contrast to the 

absorption cross section being the same order of magnitude. The 

contamination by water impurity is small, because the 

characteristic bands of H20 do not appear in both absorption and 

fluorescence excitation spectra. 

B. 3 CH3COOH 

In order to conform the emitting species from HCOOH and 

HCOOCH3, the photoabsorption and fluorescence cross sections of 

CH3COOH were also investigated in this experiment. The 

absorption Cross section in the region of 106-240 nm is shown in 

Fig. 5. The absorption spectral envelope agreee generally with 

those of Bell et a1.I0 and Barnes and Simpson.5 However, the 
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current absolute values are generally lower than those measured 

by Barnes and Simpson in the 125-250 nm region5 and Nagakura et 

a1.9 in the 155-190 nm region. The absorption cross sections at 

wavelengths longer than 190 nm are small; thus, high gas 

pressures (up to 0.7 torr) were used for the measurement. The 

dimers may contribute to the measured absorption cross section, 

for which the correction is not applied. 

Absorption of CH3COOH consists of several broad bands 

superimposing on continua. The excited states were labelled as 

A, i*, E, C, etc., by Bell et al.10, in analogy with HCOOH. The 

A '  state was not observed by Nagakura et al.9 The excited states 

at wavelengths shorter than 155 nm are likely the Rydberg series 

converging to the first ionization potentials at 10.35 eV32 or 

10.644 eV.34 Vibrational structures appear in the E, 5, and E 
states. The vibrational frequency is about 1450 cm-1, which 

corresponds to the C=O stretching frequency.10 

c a -  

d 

No detectable fluorescence was observed from photoexcitation 

of CH3COOH in the entire wavelength region studied. The 

fluorescence cross section of CH3COOH is smaller than a detection 

limit of 5x10'21 cm2. The result of the synchrotron radiation 

experiment is consistent with the fluorescence dispersion 

experiment shown in Fig.l(c) that the fluorescence signal I s  not 

detectable. 

C. Fluorescence Yields 

The fluorescence quantum yield l e  defined as a ratio of 

fluorescence cross section to absorption cross section. The 
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fluorescence yield of HCOOH is shown in Fig. 6. The yield 

increases with decreasing wavelength with a value of about 5% at 

106 nm. This trend is consistent with the result of Vinogradov 

and Vilesov,4 although they attributed of the emission to the OH 

system in contrast to the current study. . 

The quantum yield of fluorescence from the photolysis of 

H C O O C H 3  is shown in Fig. 7. The fluorescence yield starts to 

appear around 134 nm and increases with decreasing excitation 

wavelength. The maximum yield is about 0.3% at 106 nm, which is 

much smaller than that of HCOOH. This small yield may be caused 

by the fact that H C O O C H 3  has higher degree of freedom than HCOOH 

such that the probability for dissociation into the emission 

channel is small. Similar trends are observed in many cases, for 

example, H C N 3 8  versus C H 3 C N 3 9  and H 2 O 2 7  versus C H 3 0 H . 4 0  

The quantum yields of emission from HCOOH and H C O O C H 3  

photolysis are essentially a smooth function of the excitation 

wavelength, except for HCOOH in the 125-135 nm region, where 

structure is observed. The fluorescence yield is a measure of 

the interaction strength between the initial excited state and 

the dissociative states that produce the emitting species. The 

smooth function of the quantum yield indicates that the 

interaction strength is the same regardless the initial excited 

state is a continuum or a discrete state. 

The upper limit for the fluorescence yield from CH3COOH is 

estimated to be 0.02%. This value is much smaller than the data 

of Vinogradov and Vilesov4, who reported a significant 
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fluorescence yield at wavelengths shorter than 125 nm. Their 

value at 106 nm is 0.2%. 

D. Photodissociation Processes 

The possible dissociative processes of HCOOH that produce 

the emitting species are; 

HCOOH -+ HCO + OH (2) - HCOO + H  (3) 

The enthalpy changes in processes ( 2 )  and (3) are 110.2 and 166.6 

kcal/mol, respectively.41'42 The threshold wavelength to produce 

OH*(A) by process ( 2 )  is 140.4 nm. Vinogradov and Vilesod 

determined the threshold to be at (141 f 1) nm. However, the 

current result of Fig. 3(a) does not show significant 

fluorescence cross section at wavelengths longer than 135 nm. 

The potential energy of the excited state of HCOO is not known. 

Since HCOO emits at wavelengths longer than OH, the threshold 

wavelength for producing the HCOO emission must be longer than 

140 nm. The observed fluorescence threshold at 135 nm is shorter 

than the expected value. 

The possible dissociative processes of HCOOCH3 that produce 

the emitting species are, 

HCOOCH3 --9 HCO + C H ~ O  (4) 

--3 HCOO + CH3 (5) 

The enthalpy changes in ( 4 )  and (5) are 97.5 and 82.42 kcal/mol, 

The threshold to produce the HCOO emission 

via process ( 5 )  is estimated at about 174 nm assuming that the 

(0-0) transition of the HCOO emission is around 350 nm. The 

14 



observed threshold at 134 nm is much shorter than estimated. The 

fluorescence intensity at the calculated threshold is too weak to 

be detectable; this may be caused by the unfavorable Franck- 

Condon factor for the production of the emitting species at the 

threshold and/or by a potential barrier between the initial 

excited state and the dissociative channel that produces the 

emitting species. 

The photodissociation processes of HCOOH in the UV region 

have been studied recently. The quantum yield of process (2) is 

about 1 at 222 nm.43 It is likely that process ( 2 )  is alao a 

major channel in the VUV region, although no quantitative data 

are available. Other channels such as HCOO+H, H2+C02, etc., are 

possible at high excitation energy. Since the fluorescence 

yields are so small, the photoexcitation of HCOOH in the VUV 

region may mostly produce fragments in the electronic ground 

states. In that case, large excess energy may be dissipated a8 

kinetic, rotational and vibrational energies of fragments. 

CONCLUDING REMARKS 

Photoabsorption and fluorescence cross sections of HCOOH, 

HCOOCH3, and CH3COOH were measured in the 106-260 nm region using 

synchrotron radiation as a light source. The fluorescence 

spectra were dispersed and identified as the OH(A-X) and HCOO 

systema. The fluorescences were observed from HCOOH and HCOOCH3 

at excitation wavelengths shorter than 140 and 134 nm, 

respectively. The fluorescence yields increase with decreasing 
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wavelengths with maximum yields of 5% for HCOOH and 0.3% for 

HCOOCH3 at 106 nm. No emissions was detected from VUV photolysis 

of CH3COOH. 
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FIGURE CAPTIONS 

Fig. 1. Fluorescence spectra excited by NV 123.9 nm. (a) 

HCOOH, (b) HCOOCH3, (c) CH3COOH and (d) background. 

The detection response is shown in (a) as the dashed 

line. 

Fig. 2. Fluorescence spectra from (a) HCOOH and (b) HCOOCH3 in 

presence of 1 atmosphere of He. 

Fig. 3. Absorption ( -1 and fluorescence ( - - -  ) cross sections 

of HCOOH. The cross section is in units of Mb (10-18 

cm2/molec. 1. Assignment of excited states are 

indicated based on the assignment by Bell et al. The 

absorption cross section in the 180-250 nm region is 

affected by dimer (see text). 

Fig. 4. The absorption ( -  ) and fluorescence ( - - -  ) cross 

sections of HCOOCH3 in the 106-250 nm region. The 

cross section is in units of Mb (10-18 cm2/molec.). 

Fig. 5. The absorption cross section of CH3COOH. The cross 

section is in units of Mb (10-18 cm2/molec.). The 

cross section in the 180-240 nm region may be affected 

by the presence of dimer. 

Fig. 6. Quantum yield of fluorescence from photodissociative 

excitation of HCOOH. 

Fig. 7. Quantum yield of fluorescence from photodissociative 

excitation of HCOOCH3. 
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CH(A-X, B-X) Emissions from Photodissociative Excitation 

of CH3 

Chao Ye, Masako Sutoa) and L. C. Leeb) 

Department of Electrical and Computer Engineering 
San Diego State University 
San Diego, California 92182 

ABSTRACT 

CH(Aq, B2Z- - X2gr) emissions were produced by a single- 

photon excitation of CH3 at 157.5 nm and a two-photon excitation 

process at 193 nm. No emissions were detected at 248 nm. The 

emission intensity from CH2 is quite small when compared w i t h  CH. 

The CH3 radicals were produced by the C1 + CH4 and F + CH4 

reactions as well as by photolysis of methyl compounds. The 

emission source was identified by modeling the reaction kinetics 

of the C1 + CH4 system. Photodissociation process for the 

absorption continua of CH3 is discussed. 

a) To whom correspondence should be addressed. 

b) Also, Department .of Chemistry, San Diego State University 
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. 

I. INTRODUCTION 

Methyl radical is an active chemical species involved in 

hydrocarbon combustion, atmospheric methane oxidation cyclel, and 

interstellar molecule formatibn process2. Recently, it is also 

found that CH3 radical could lead to formation of diamond film3. 

The spectroscopic information of CH3 is of interest for these 

applications and for the fundamental study of photodissociation 

process as well. 

CH3 has been extensively studied in vacuum ultraviolet (VUV) 

and ultraviolet (UV) absorption4p 5, photoelectron spectra6p 7, 

photoelectron detachmente, and infrared absorption9. Molecular 

orbitals, excited states and molecular geometry of CH3 are 

theoretically investigated by many authorslo-14. Excited states 

that are optically-forbidden for a single-photon excitation were 

recently revealed by a resonance-enhanced multiphoton-ionization 

methodl5-21. 

Up to now, the VUV spectroBcopic etudies of CH3 are limited 

to Rydberg states22. The absorption continua that have a mixed 

character of Rydberg and valence transitions23 are very little 

studied. The existence of absorption continua is evident by the 

fact that all absorption bands are diffuse4p5. Excitation to 

absorption continua could lead to excited photofragments that 

consequently emit. Theoretical aspect of the CH3 photochemistry 

has been discussed by Yu et al.14; but experimental data are 
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clearly needed for a better understanding of the 

photodissociation process. 

Emissions from excited photofragments could be used as a 

sensitive means for the detection of CH3. This photofragment 

method has been demonstrated in the 'detection of the H02 

r a d i ~ a l ~ ~ - ~ ~ .  One of the possible applications is for the 

measurement of reaction kinetics. The reaction kinetics of CH3 

It 

I s  expected that better detection sensitivity and spatial 

resolution will be achieved by the photofragment detection. 

Since CH3 does not emit, it can not be detected by the laser- 

Induced-fluorescence technique. 

have been measured by the UVZ7 and VUV28 absorption methods. 

11. EXPERIMENTAL 

The experimental apparatus is shown in Fig. 1. A typical 

discharge flow reactor24-26 was used to produce methyl radicals 

by abstraction of hydrogen from CH4 by halogen atoms (F or Cl), 

which were produced by microwave discharge of a trace of F2 In He 

In an alumina tube or C12 in He In a glass tube. The flow 

reactor was a Pyrex tube of 1 Inch O.D. and 30 cm long coated 

with Teflon. CH4 in He was introduced through a movable Inlet. 

Total pressure In the reactor was typically about 2 Torr, and the 

flow velocity was set at 1000-1500 cm/s. 

The gas cell was a six-way stalnlese steel cross of 4 Inch 

O.D. with a MgF2 window placed in front of the excimer laser. 

High purity nitrogen gas continuously flushed between the laser 
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and gas cell windows for the transmission of VUV light. Laser 

power was monitored through a sapphire window in the rear side of 

the gas cell. The window surfaces inside the gas cell were 

constantly flushed by He to prevent deposition of CHx radicals on 

the surfaces. The excimer laser (Lumonics TE860-4) was operated 

at a repetition rate of 20 Hz (pulse duration of 6 ns). The 

laser beam was not focused. 

Fluorescence was observed through a fused quartz window in a 

direction perpendicular to the laser beam. The fluorescence was 

dispersed by an 0.25 m spectrometer (Jarrel-Ash) and detected by 

a 1024 channel diode array (OMA 111, EG&G PARC). Sampling gates 

opened 1 to 10 p after each laser pulse. Occasionally, the 

fluorescence was dispersed by an 0.5 m monochromator (Acton) and 

the output from a cooled photomultiplier tube (PMT, EMI9558QB) 

was processed by a boxcar integrator (EGPG, PARC). Emission 

spectra obtained by these different detection systems are all 

similar. Emission spectra were taken at varied gas 

concentrations, laser powers and reaction timee. A spectrum with 

a good signal to noise ratio was typically obtained by an 

accumulation of 2000 laser shots. 

The ArF (193 nm) and KrF (248 nm) laser power was monitored 

by a power meter (Scientech). The relative power of the F2 laeer 

(157.5 nm) was monitored by measuring the fluorescence intensity 

from photodissociation of C2F3C1. At 157.5 nm, C2F3C1 

d i ~ s o c i a t e s ~ ~  into excited CFC1" which then emits. C2F3C1 flowed 

slowly with a constant pressure of about 0.2 Torr in a gas cell 
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separated from the main chamber by a sapphire window. Both 

C2F3C1 and CH3 simultaneously excited by the same laser beam. 

The fluorescence from CFCl' was detected by a PMT (EM1 9635 QB) 

with a band pass filter, and the signal was processed by a boxcar 

integrator. 

In the photolysis experiment, liquid sample of (CH312SO was 

kept in a stainless container and degassed at liquid nitrogen 

temperature. Sample of CH3C1, CH3Br or (CH3)zSO with He buffer 

gas was continuously fed into the gas cell and pumped by a 

mechanical pump with a cold trap. Pressure in the gas cell was 

monitored by a capacitance manometer (MKS Baratron). 

111. RESULTS 

1. C& from the C1 + CH4 Reaction 

CH3 can be produced by the reaction, 

C1 + CH4 + CH3 + HC1 (1) 

The reaction rate constant is about 1.0 x cm3 molec-ls-1 at 

298 K30. Chemiluminescence was produced from t h e  reaction. Some 

chemiluminescence bands can be assigned to the CH, C12 and HC1 

emissions; however, the source for the chemiluminescence is not 

clear. Chemiluminescence intensity decreases rapidly with 

increasing reaction time. The interference of the observed 

fluorescence by chemiluminescence can be minimized by changing 

the reaction time. The interference is further avoided by gating 

the detection system. It is noted that the CH(A-X) band does not 

appear in the chemiluminescence spectrum. 
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l.a. Excitation of CHn at 157.5 nm 

When the reaction medium containing CH3 was irradiated by 

F2 laser photons, fluorescence was observed as shown in Fig. 2. 

The emission was observed within 10 ps after each laser pulse.' 

This gated detection achieves that the emission is correlated 

with the laser pulse and the contribution of chemiluminescence is 

negligible. The emissions at 390 and 431 nm are identified as 

the CH(B-X) ( 0 , O )  and the CH(A-X) (0,O) bands, respectively. The 

broad band with peak at 490 nm may be partly due to the CH(A-X) 

( 0 , l )  transition. 

The laser power dependence of the CHtA-X) emission intensity 

is shown in Fig. 3. The slope of the plot is approximately 1, 

indicating that the fluorescence is produced by a single-photon 

excitation process. When the laser power was high, noticeable 

deviation from the straight line was observed as shown in Fig. 2. 

Additional emission source is evident, which is likely due to the 

two-photon excitation of secondary reaction products (for 

example, C H Z C ~ ~ ~  as discussed later). When reactant 

concentrations were limited low, the deviation from a straight 

line disappeared because of negligible secondary reaction 

products. No emission was observed from photolysis of CH4 alone 

due to extremely small absorption cross section at 157.5 nm32. 

The emission source was investigated by observing the 

fluorescence intensity at CC121 varied in 0-5 mTorr and CCH41 in 

5-40 mTorr. CC121 was always kept much smaller than CCH41. The 
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dependence of fluorescence intensity on CCH41 is shown in Fig. 4. 

The fluorescence intensity increases with low CCH41 and then 

saturates at high CCH41. The dependence of fluorescence 

intensity on reaction time is shown in Fig. 5. The fluorescence 

intensity increases with increasing CC121 (or CC11). The 

fluorescence intensity was normalized against the laser power 

that decreased in the course of experiment. The fluorescence 

intensity reaches a maximum within 3-6 m s  and then decreases at 

the long reaction time. This decrease indicates that 

fluorescence arises from transient species (which is likely the 

CH3 radical, a primary product of the Cl+CH4 reaction). The 

other primary product, HC1, absorbs laser light with an 

absorption cross section33 of 3.2 x cm2, but it dissociates 

into H + C1 so that it does not fluoresce. 

In order to check whether the CH3 radical is indeed the 

emission source, the concentrations of reaction products were 

simulated using a Gear routine that solves the simultaneous 

reaction rate equationa34. The reactions involved in the 

modeling are listed in Table I. The wall loss rate (Equation 

(4) in Table I) was adjusted to best fit the observed 

fluorescence data shown in Fig. 5. The reaction of C1 + CH3 + 

CH2 + HC1 is not considered, because it is an endothermic process 

such that this reaction does not occur. The loss of CH3 due to 

reaction with CH4 is ignored, because the fluorescence intensity 

was not reduced by adding CH4 as shown in Fig. 4. The calculated 

profiles of CCH31, CCH3C11, and CC2H61 as a function of reaction 
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time are illustrated in Fig. 6. Both of CCH3C11 and CC2H61 

increase monotonically with reaction time, but ECH31 decreases at 

the long reaction time. These results corroborate with the 

assertion that the CH3 radical is the source for the observed 

fluorescence. 

It is noted that CCH3ClI is high even at a short reaction 

time, if CC121 and CCH41 are high. Thus, it is expected that the 

CH(A, B-X) emissions from two-photon excitation of CH3C1 will 

show up at high laser power. This explains the additional 

fluorescence at high laser power as shown in Fig. 3. The 

fluorescence produced by two-photon excitation of CH3C1 will be 

further discussed later. Although CCH3C11 is higher than CCH31, 

the probability of the two-photon excitation is expected to be 

small at low laser power so that the observed fluorescence is 

mainly from CH3 (see Fig. 3). 

The fluorescence cross section can be estimated by comparing 

the fluorescence intensity with that of C2F3C1, for which the 

fluorescence cross sect ion is 6x10-18 cm2 at 157.5 nm29. If w e  

assume that 10% of C12 l e  dissociated by the microwave discharge, 

then CC11 is in the order of 1013 cm-3, which could be mostly 

converted into CCH31. With this assumption, the fluorescence 

croes section of CH3 ie roughly estimated to be in the order of 

10-18 cm2. 

The branching ratio for the fluorescence cross sections of 

CH(B-X) to CH(A-X) is about 8%. The CH2 (b-a) emission system 

may exist in the continuum background shown in Fig. 2; however, 

- r y  
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the identification of this emission system is difficult, because 

the continuum may consist of other emission systems, for example, 

the CH(A-X) ( 0 , l )  band. The branching ratio for the fluorescence 

cross sections of CH2 to CH I s  estimated to be less than lo%, 

assuming that a half of the continuum background belongs to the 

CH2 system. The CH2 system may in fact be negligibly small. 

l . b .  Excitation of CHn at 193 nm and 248 nm 

When the C1 + CH4 reaction medium was irradiated by ArF 

laser photons, CH(A, B-X) emissions were observed. The 

fluorescence spectrum is very similar to that of F2 laser 

excitation (Fig. 2). The dependencies of the CH(A-X) 

fluorescence intensity on reaction time and laser power are shown 

in Fig. 7 (a) and (b), respectively. The reaction time 

dependencies are very similar to those observed In the 157.5 nm 

excitation (Fig. 5); thus, it indicates that the CH emission 

associates with CH3. The fluorescence intensity depends on the 

square of the laser power (121, indicating that the CH(A, B-XI 

emleelone are produced by two-photon excitation process. 

Photofragment emission from the C1 + CH4 reaction medium was 

also studied using an Xe resonance lamp (147 nm) and an KrF laser 

(248 mn) as light sources. No emission was observed from 

excitation of the reaction medium by KrF laser photons. When the 

Xe lamp was used, the OMA was set in the CW mode. The observed 

signal was too weak to distinguish from chemiluminescence. Thus, 

the presence of photofragment emission at 147 nm is not certain. 
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2. CHn Produced by the F + CH4 re ctia 

CH3 radicals were also produced by the reaction, 

F + CH4 + CH3 + HF (2) 

In this reaction, chemiluminescence was observed only at very 

short reaction time. The. chemiluminescence spectrum consists of 

the CH(A, B-XI, C2 Swan bands, and HF vibrational-rotational 

bands as reported previo~sly35~3~. 

When the reaction medium was irradiated by F2 laser photons, 

the CH(A, B-X) emissions were observed. The fluorescence 

spectrum (with a resolution of 0.3 nm) for the CH(A-X) emission 

is shown in Fig. 8. The branching ratio of the CH(A-X) to CH(B- 

X) emission is similar to that of the Cl+CH4 reaction medium. 

When CCH41 is excess over CF21, the fluorescence intensity 

increases linearly with CF21. The shorter the reaction time, the 

stronger is the fluorescence intensity. This reflects the fact 

that the reaction ( 2 )  is very fast (k2 = 8 x ~ m ~ m o l e c ' ~  

8-1 ) 36. The laser power dependence shows that the fluorescence 

arise6 f r o m  a eingle-photon excitation procees. These reeulte 

Indicate that the CH fluoreecence arises from the primary product 

of the F + CH4 reaction, namely, CH3. This confirms the results 

obtained from the C1 + CH4 reaction. 

When CFI is comparable with CCH41, the secondary reaction, 

F + CH3 --3 CH2 + HF (3) 

will take place. The CH2 radical may then be dissociated into 

CH* + H by a 157.5 nm photon to produce the observed CH 

fluorescence. Since this process requires two consecutive F 
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reactions, the fluorescence intensity will be proportional to 

CFl2 or CF212. This is different from our observation that the 

CH emission intensity increases approximately linearly with CF21; 

thus, the emission source is not produced by the secondary 

reaction process, that is, CH2 is not the major emission source. 

Also, CFI and CCH31 are more than two order of magnitude smaller 

than CCH41 in our experiment, so the ECH21 produced by reaction 

(3) is expected to be quite small; therefore, the contribution 

of CH2 to the observed CH fluorescence should not be large. 

3. CHn produced by Photolysis of Methyl Compounds 

Production of CH3 by photolyeie of methyl compounds, CH3C1, 

C H 3 B r ,  and (CH3)2SO, was a180 inveetigated in this experiment. 

When CH3C1 is irradiated by F2 laser photons, product of CH3 and 

C1 is likely the major channel. CH3 may then be excited by 

another photon to produce CH emissions, namely, 

CH3C1 + hv (157.5) --* CH3 + C1, ( 4 )  

CH3 + hV (157.5) + CH" + H2. ( 5 )  

The CH(A, B-X) emissions by photoexcitation of CHSC1 at 157.5 n m  

are ehown in Fig. 9 (a) and a180 a higher resolution spectrum in 

Fig. 9 (b). The emission inteneity depends linearly on CCH3C11 

and quadratically on laser power shown in Fig. 9 (c). These 

results are consistent with the attribution of stepwise 

excitation (4) and ( 5 )  to the observed CH fluoreecence. The 

probability for the process that one photon di88OCiateS CH3C1 

into CH2C1 + H and another photon dissociates CH2C1 to produce CH 

emissions is expected to be small, because the CH2C1-H bond is 
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stronger than the CH3-Cl bond. Howel er, the contribi tion of this 

process is not totally ruled out. 

The CH(A, B-X) emissions were observed from photoexcitation 

of CH3C1 by ArF laser photons at 193 nm. The laser power 

dependence of the emission intensity indicates that the 

excitation is a two-photon excitation process. The CH(A, B-X) 

emissions were commonly observed by the two-photon excitation of 

CH3X (X=Br, I and OH) with ArF laser photons37-39. Baronavski 

and McDonald3a suggested that the fluorescence from 

photoexcitation of CH3Br is by, 

CH3Br + hV(193) - ->  CH3) + Br, (6) 

CH3# + hV(193) --> CH" + H2. ( 7 )  

High vibrational energy is required for process (7) to occur. On 

the other hand, Fotakis et al.39 favored the simultaneous two- 

photon excitation, 

CH3X + 2h3 (193) - ->  CH3X** - - >  CH* + H2 + X. (8) 

The probability for this simultaneous excitation may be smaller 

than the stepwise excitation, because CH3XY* has an excitation 

energy of 12.8 eV that will mostly lead to ionization. 

No emission was observed from the multiphoton excitation of 

CH3C1 at 248 nm. CH3C1 has a very small absorption cross 

section at 248 nm40, so the two-photon excitation coefficient ia 

expected to be small. Also, there is no emission from the 248 nm 

excitation of CH3; thue, the chance for stepwise excitation is 

eliminated. 

12 



The CH(A, B-X) emission was observed when CH3Br was 

irradiated by F2 laser photons. The absorption cross section of 

CH3Br at 157.5 nm41 is about 6 x cm2. The absorption is a 

continuum, so the excited molecules undergo dissociation. The CH 

emission intensity is proportional to CCH3Brl and- quadratically 

dependent on laser power. These results suggest that the 

excitation is a two-photon process. Similar to CH3C1, the 

excitation Is likely a two-step photodissociation process. When 

the gate was left off, Br2 were observed. The Br2 

emissions are likely due to the secondary reaction, 

Br + Br (+MI + BrZ* (+M). ( 9 )  

Emission from photoexcitation of (CH312SO at 157.5 nm was 

also examined, because this compound is often used as a methyl 

radical source15-18. The CH(A, B - X )  emissions were observed. 

The emission intensity depends linearly on C(CH3)2SOl and 

quadratically on laser power. These results indicate that the CH 

emission is produced by the two-photon excitation process, 

(CH3)zSO + hv (157) -----) CH3 + CHsSO, (10) 

CH3 + hu (157) * GH* + H2. ( 5 )  

Iv. Discussion 

The current excitation wavelengths do not coincide with any 

Rydberg states4# 18; therefore, the observed fluorescence is 

produced by dissociative states. These dissociative state8 are 

expected, because the Rydberg states are very diffu~e4~5. 

However, the nature of the dissociative continua is not yet 

13 



studied, and the current observa,,ons provide information for 

such study. 

4.a. Rydberu states and Dissociation Limits 

It is well e s t a b l i ~ h e d 1 ~ ~ ~ ~ ~ ~ ~  that the ground electronic 

state of CH3 is of D3h symmetry with an electron configuration, 

The optically-allowed transitions for excitation of the la2” 

orbital to various Rydberg orbitals were 0bserved4~5 at 216.0, 

150.3, 149.7, and 140.8 nm for the B, C, D and states, 

respectively. Optically-forbidden transitions were observed by 

two-photon excitation, in which the 3p orbital was determined at 

7.43 eV17r1a. The potential energies of these Rydberg states are 

indicated in Fig. 10. Herzbergs pointed out that the first 

excited state, B ZAi’, should dissociate into CH2(Z1A1’ 1 + H(2S). 

Danon et al. l9 measured the lifetime of the % state to be 0.12 ps 
using a multiphoton ionization technique. 

& N #.# 

& 

Energy threshold is an essential information needed for 

understanding the photoexcitation process. The energy threeholde 

be calculated from the 

changes for the 

for various dissociation processee can 

the enthalpy changes, for example, 

diesociation processes, 

CH3 -+ CH2 + H, 

+ CH + H2, 

are dH=109.6 kcal/mol for (11) anc 

the thermochemical values of 

enthalpy 

(11) 

(12) 

107. kcal/mo for (12), using 

JANAF Table43. Taking the 

excitation energies for the excited CH(A?4 and B2X-) states to be 
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2.875 and 3.229 eV44, the energy thresholds for the production of 

the CH(A-X) and CH(B-X) emissions by photoexcitation of CH3 are 

7.53 and 7.88 eV, respectively. Photoexcitation of CH3 could 

also produce the CH2(blBl - alA1) and CHz(g1A1 - alA1) emissions. 

. The 2 state is about 0.5 eV45 above the ground electronic state 

The energies required to produce CH2 ( b-a ) and CH2 (c-a ) 

N ry ” 

k W  N e  

&B1 ) . 
emissions by photoexcitation of CH3 are about 6.2 and 8.7 eV, 

respectively. These dissociation energy thresholds are indicated 

in Fig. 10, along with the laser photon energies. 

4.b. Photodissociation Processes at 157 nm 

As shown in Fig. 10, the F2 laser photons (which consist 

three lines at 156.71, 157.48, and 157.59 nm) have energy barely 

enough to produce the excited species of CH(B), and sufficient 

energy to produce CH(A) and CH2(G). In this experiment, the 

CH(A,B-X) emissions were observed, but the presence of the CH2(b- 

a) emission is not certain. The CH2 emission spreads widely from 

... 
N 

400 nm to infrared, and it could be hidden in the continuum 

emission background (see F i g s .  2, 8 and 9 ) .  In any case, t h e  CH2 

emlesion intensity is much weaker than that of the CH emlesion. 

This result differs from the expectation of Yu et al.14 that the 

CH + H2 process is a minor pathway when compared with the CH2 + H 

process. 

The photoabsorption cross section of CH3 at 157 nm le not 

known. Since the CH emission is produced by a single-photon 

process, the absorption cross section must be sufficiently large. 

In general, polyatomic molecules have absorption continua 

15 



underneath discrete states. The absorption continua usually have 

mixed character of Rydberg and valence states23. The observed CH 

emissions are produced by direct excitation of CH3 through these 

dissociative continua. The absorption cross sections of CH3 at 

the Rydberg states of 150.4, 150.0 and 149.7 nm were measured by 

Pilling et The cross sections at al.46 and 216 nm by Arthur 27. 

the band peaks are high, for example, 4.85~10'16 cm2 at 150.4 nm. 

Considering such high cross sections for the discrete states, the 

absorption continua may have a large strength. Taking the 

estimated fluorescence cross section in the order of 10-18 cm2 

and a fluorescence quantum yield of 10% (this value is in the 

upper side for a typical high fluorescing molecule), the 

absorption continua could have a cross section in the order of 

10-17 cm2. It is of interest to measure the cross section of the 

absorption continua over a wide wavelength range. 

The CH emissions observed from photoexcitation of methyl 

compounds (CH3C1, CH3Br and (CH3)2SO) are most likely produced by 

a stepwlse two-photon excitation process. The contribution from 

the simultaneous two-photon excitation (CH3X + 2hV(157.5) --+ 

CH3XY* + CH* + H2 + X) may be small, because the laser beam is 

not focused (about photons/cm2 per pulse) such that the 

laser flux is not high enough for a strong simultaneous 

multiphoton excitation. Also, the simultaneous two-photon 

excitation will excite the molecule up to 15.7 eV where the 

ionization channel dominates and the fluorescence yield is 

usually small. 

16 
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When the CH3 radical is produced by photodissociation of 

methyl compounds, it may carry a large amount of kinetic energy 

and rotational-vibrational energy, depending on the parent 

molecules. However, the observed fluorescence spectra are very 

similar for all molecules studied. These results indicate that 

the emitting species may be all produced by the same dissociative 

state(s) and/or the fluorescence spectra are limited by the 

nature of the excited CH states. 

4.c. Photoexcitation Process at 193 nm 

The CH(A, B-X) emissions were observed from photoexcitation 

of CH3 by ArF laser photons. As shown in Fig. 10, the photon 

energy of 193 nm is not enough to produce the CH emission; thus, 

the emissions must be produced by multiphoton excitation process. 

There is no discrete absorption band of CH3 around 193 nm, so the 

excitation must go through absorption continua. The absorption 

spectrum of CH3 shows absorption continuum in the 210-220 nm 

region47, which may extend toward the shorter wavelength. 

The dissociation process at 193 nm may be eimilar to that of 

216 nm bands, that is, 

(13) -3 CH3 + hV(193) + CH2(X) + H, 

where CH2( X)' indicates vibrational or rotational excited states. 

The 193 nm light has sufficient energy to produce CH2(b), but 

emission from this excited species is not well identified. A 

second photon may further dissociate the CH2 radical into CH" + 

H, and consequently emits, 

cy 

CHZ + hV (193) + CH* (A, B) + H. ( 1 4 )  

17 
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Probability for the eimultaneous two-photon excitation, 

CH3(;) + 2hV (193) + CH3** --3 CH* (A,B) + H2, (15) 

+ CH* (A,B) + 2H, (16) 

may be small, because it will excite CH3 to 12.8 eV, where 

ionization channeL dominates and the fluorescence yield is 

usually quite small. The probability for the production of the 

CH emissions by the stepwise excitation, 

CH3 + hv(193) + CH(X)# + H2 (17) 

CH + hu(193) + CH* (18) 

is also expected to be small, because there are no CH resonance 

states at 193 nm. 

The spectral profiles of the CH emissions are always about 

the same, in spite of different excitation wavelength and 

excitation process. This similarity may be inherent with the 

nature of the CH excited statee. The high rotational and 

vibrational levels are predissociated44 so that the emission is 

only due to the low rotational levels of the CH(A,B) v=O 

vibrational levels that produce similar emission spectra. 

4.d. Photoexcitation at 248 nm 

No emiesions were detected at 248 nm excitation. The KrF 

laeer power le a factor of 2-3 stronger than the ArF laser; thus 

the KrF laser must have a high multiphoton excitation efficiency 

if CH3 ha8 similar photoabsorption cross sections at both 

wavelengthe. The non-emiseion indicates that the absorption 

cross section of CH3 at 248 nm must be very small. 

18 



V. CONCLUDING REMARKS 

Photoexcitation process of methyl radicals produced by the 

reactions of C1 + CH4 and F + CH4 is studied using excimer laeere 

as light sources. The CH(A, B - XI emissions are produced by a 

eingle-photon excitation process at 157.5. nm. The emi~seion 

source is confirmed by the dependencies of emission intensity on 

reactant concentration6 and reaction time. The fluoreecence 

cross section was estimated to be in the order of 10-18 cm2. 

The CH emieeions are produced by two-photon excitation of CH3 at 

193 nm. No emissione were detected at 248 nm. Our results 

indicate that the abeorption continua have large cross sections 

at 157.5 and 193 nm, but not 248 nm. Measurements for the croes 

sections of the absorption continua are of intereet for further 

study of photodissociation process. 

ACKNOWLEDGEMENT 

The authors wish to thank M. C. Lin at Naval Research 

Laboratory for ueeful discuseion and euggeetione. They also 

thank D. Coffey, Jr. at San Diego State Univereity for providing 

the computer program for modeling the C1 + CH4 reaction kinetics. 

This paper is based on the work eupported by the NSF and the 

NASA. 

19 



REFERENCE 

1. B. J. Finlayson-Pitts and J. N. Pitts Jr. "Atmospheric 

Chemistry, " (Wiley, New York, 1986) 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

A. Dalgalno and J. H. Black, Rep. Prog. Phye. 39, 573 (1976) 

Y. Saito, S. Matsuda and S. Nogita, J. Material Sci. Lett. 

a 569 (1986); Y. Hirose and y. Terasawa, Jpn. J. Appl. 

Phys. 25. L519 (1986); S. Matsumoto, M. Hino, and T. 

Kobayashi, Appl. Phys. Lett. 51, 737 (1987). 

G. Herzberg and J. Shoosmith, Can. J. Phys. 34. 523 (1956) 

G. Herzberg, Proc. Roy. SOC. London Ser. A 262, 291 (1961) 

J. Dyke, N. Jonathan, E. Lee and A. Morrie, J. Chem. SOC. 

Faraday Trans. 2, 72, 1385 (1976) 

T. Koenig, T. Belle, and W. Snell, J. Am. Chem. SOC. 97. 662 

( 1975 1 

G. B. Ellison, P. C. Engelking and W. C. Lineberger, J. Am. 

Chem. SOC. 100, 2556 (1978) 

C. Yamada, E. Hirota, K. Kawaguchi, J. Chem. Phys. 75, 5256 

(1981 ) 

K. Morokuma, L. Pedereen, and M. Karplue, J. Chem. Phye. 

48.4801 ( 1968) 

Y. Ellinger, F. Pauzat, V. Barone, J. Douady and R. Subra, 

J. Chem. Phys. 73 6390 (1980) 

G. T. Surratt and W. A. Goddard 111, Chem. Phye. 23, 39 

( 1977) 

J. Pacansky, J. Phys. Chem. 86. 485 (1982) 

20 



14. H. T. Yu, A. Sevln, E. Kassab and E. M. Evleth, J. Chem. 

Phye. 80, 2049 (1984) 

T. G. DiGiuseppe, J. W. Hudgene and M.C. Lin, Chem. Phys. 15. 

Lett. 82, 267 (1981) 

T. G. DiGiueeppe, J. W. Hudgene and M. C. Lin, J; Phys. 

Chem. 86. 36 (1982) 

J. W. Hudgene, T. G. DiGiuseppe and M. C. Lin J. Chem Phys. 

79. 571 (1983) 

16. 

17. 

18. M. C. Lln and W.A. Sanders, Adv. Multiphoton Proceesee 2,, 

333 (1986) 

J. Danon, H. Zacharias, H. Rottke and K. H. Welge, J. Chem. 19. 

Phys. 76, 2399 (1982) 

B. H. Rockney and E.R. Grant, J. Chem. Phye. 77. 4257 (1982) 20. 

P. Chen, S. D. Colson, W. A. Chupka and J. A. Berson, J. 21. 

Phys. Chem., 90. 2319 (1986) 

22. G. Herzberg, "Electronic Spectra of Polyatomic Molecules," 

Von Nostrand Reinhold, New York, 1966 

23. M. B. Robin "Higher Excited States of Polyatomic Moleculee," 

vol. 1 (1974) and vol. 3 (1985), Academic Preee, New York. 

24. 

25. 

M. Suto and L. C. Lee, J. Chem. Phys. 80. 195 (1984) 

L. C. Lee, H. Helm and J. S. Chang, Chem. Phys. 81, 537 

(1981); L. C. Lee, J. Chem. Phye. 76, 4909 (1982) 

26. E. R. Manzanares, M. Suto, L. C. Lee, and D. Coffey, Jr., J. 

Chem. Phys. 85. 5027 (1986); X. Wang, M. Suto and L. C. Lee, 

J. Chem. Phye. in press. 

21 



41. 

42. 

43. 

44. 

45. 

46. 

47. 

M. Suto and L. C. Lee, unpublished data. 

R. W. B. Pearee and A. G. Gaydon, "The Identification of 

Molecular Spectra," Chapman and Hill, London (1976) 

M. W. Chase, Jr., C. A. Daviee, J. R. Downey, Jr., D. J. 

Frurip, R. A. McDonald, and A. N. Syverud, "JANAF 

Thermochemical Tables, Third ed. J. Phys. Chem. Reference 

Data, 14, (1985) Supplement No. 1. 

K. P. Huber and G. Herzberg, "Constants of Diatomic 

Molecules," Van Noetrand Reinhold, New York, 1979 

J. Romelt, S. D. Peyerimhoff and R. S. Bunker, Chem. Phye. 

54, 147 (1981) 

M. J. Pilling, A. M. Baee and W. Braun, Chem. Phye. Lett. S, 

147 (1971) 

D. A .  Parkee, D. M. Paul, and C. P. Quinn, J. Chem. SOC. 

Faraday Trane. 1, 72, 1935 (1976). 

23 



Table I 

Reactions used for modeling the C1 + CH4 system. 

Reactions Rate constantsa Ref. 
(cm3 molec-1 8-11 

1. C1 + CH4 + CH3 + HC1 1.0 10-13 30 

2. CH3 + C12 + CH3C1 + C1 2.0 x 10'12 31 

3. CH3 + CH3 + C2Hg 4 x 10-11 

4. CH3 + wall loss (150)C 

5. CH3C1 + C1 -+ CH2C1 + HC1 4.9 x 10-13 

27b 

-- 
30 

b. 

a. All reaction rate constants are measured at room temperature 

(298 - 300 K) 

CH3 + CH3 + He * C2Hg + He measured at a total pressure of 

4-575 Torr. 

c. Value adjusted for best fit to experimental data. The unit 

is 8-1. 
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Fiuure Caption 

Fig. 1. Schematic diagram for the experimental setup. 

Fig. 2. The CH(A,B-X) fluorescence spectrum observed from 

irradiation of the C1 + CH4 reaction medium by F2 laser 

photons. The partial pressures are: CCH41 = 50 mTorr, 

CC121 = 2 mTorr, and CHel = 1.5 Torr. C1 atoms are 

produced by a microwave discharge of C12 in He. The 

flow velocity is about 1000 cm/s, and the reaction time 

is about 3 me. The spectral resolution is 12 nm, and 

the OMA gate duration is 10 pe. 

Fig. 3. The laser power dependence of the CH ( A - X )  fluoreecence 

intensity produced from excitation of the C1 + CH4 

reaction medium by F2 laser photons. The elope of the 

plot is about 1 at small laser power. Experimental 

parameters are: CC123 = 1 mlorr, LCH43 = 15 mTorr, 

total pressure = 1.9 Torr, flow velocity = 1515 cm/e, 

and reaction time = 4 ms. 

Fig. 4. The CH (A-X) fluorescence inteneity produced from 

excitation of the C1 + CH4 reaction medium by F2 laser 

photon8 at varied CCH41. Experimental parameters are 

fixed at CC123 = 2.2 mTorr, [He3 = 2.2 Torr, and 

reaction time of about 6 ms. 
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Fig. 5. The CH(A-X) fluoreecence inteneity produced from 

excitation of the C1 + CH4 reaction medium by F2 laser 

photons at varied reaction timee. Experimental 

parameters are: CCH41 = 20 mTorr, CC121 = 2.1 mTorr, 

and CHel = 2 Torr 

Fig. 6. The eimulated concentratlone of reaction producte, CH3, 

C2H6, and CH3C1, in the C1 + CH4 reaction medium. The 

concentrations of CC121 = 2.1 mTorr, CC11 = 0.1 CC121, 

and CCH41 = 20 mTorr, and the reaction rate constante 

lieted in Table I are used in the calculation. 

Fig. 7. The reaction time dependence (a) and laser power 

dependence (b) of fluorescence intensity produced from 

excitation of the C1 + CH4 reaction media by ArF laeer 

photons. (a) CC121 = 1 mTorr, CCH41 = 26 mTorr,and CHel 

= 1.8 mTorr; (b) CC121 = 1 mTorr, CCH41 = 15 mTorr, and 

CHel = 1.8 mTorr at a reaction time of 4 me. 

Fig. 8. The CH (A-X) fluorescence spectrum produced from 

excitation of the F + CH4 reaction medium by F2 laser 

photons. The emission is dispersed by a 0.5 m 

monochromator with a resolution of 0.3 nm. 

Experimental parameters are: CF23 = 4 mTorr, tCH43 = 20 

mTorr, CHel = 1.5 Torr, and reaction time = 3.5 ms. 
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Fig. 9. Fluorescence from excitation of CH3C1 by F2 laser 

photone. (a) The CH(A,B - X )  emissions with a 

resolution of 12 nm. (b) The CH(A - X) emission 

with a reeolution of 1.5 nm. (c) laser power 

dependence of the CH(A. - X )  emission intensity. The 

sample gas is 60 mTorr CH3C1 diluted in 1.1 Torr He. 

Fig. 10 Potential energiee for the Rydberg State8 and the 

dissociation limit8 of CH3. Laser photon energiee are 

also indicated. 
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